101 research outputs found

    Work function and surface stability of tungsten-based thermionic electron emission cathodes

    Full text link
    Materials that exhibit a low work function and therefore easily emit electrons into vacuum form the basis of electronic devices used in applications ranging from satellite communications to thermionic energy conversion. W-Ba-O is the canonical materials system that functions as the thermionic electron emitter used commercially in a range of high power electron devices. However, the work functions, surface stability, and kinetic characteristics of a polycrystalline W emitter surface are still not well understood or characterized. In this study, we examined the work function and surface stability of the eight lowest index surfaces of the W-Ba-O system using Density Functional Theory methods. We found that under the typical thermionic cathode operating conditions of high temperature and low oxygen partial pressure, the most stable surface adsorbates are Ba-O species with compositions in the range of Ba0.125O to Ba0.25O per surface W atom, with O passivating all dangling W bonds and Ba creating work function-lowering surface dipoles. Wulff construction analysis reveals that the presence of O and Ba significantly alters the surface energetics and changes the proportions of surface facets present under equilibrium conditions. Analysis of previously published data on W sintering kinetics suggests that fine W particles in the size range of 100-500 nm may be at or near equilibrium during cathode synthesis, and thus may exhibit surface orientation fractions well-described by the calculated Wulff construction

    Time-dependence of SrVO3_3 thermionic electron emission properties

    Full text link
    Thermionic electron emission cathodes are critical components of various high power and high frequency vacuum electronic devices, electron microscopes, e-beam lithographic devices, and thermionic energy converters, which all demand an efficient and long-lasting low work function cathode. Single phase, polycrystalline perovskite oxide SrVO3_3, with its intrinsic low effective work function and facile synthesis process, is a promising cathode candidate, where previous works have shown evidence of an effective work function as low as 2.3 eV. However, assessment of the stability over time under conditions relevant for operation and the related interplay of evolving surface chemistry with emission performance are still missing, and necessary for understanding how to best prepare, process and operate SrVO3_3 cathodes. In this work, we study the vacuum activation process of SrVO3_3 and find it has promising emission stability over 15 days of continuous high temperature operation. We find that SrVO3_3 shows surface Sr and O segregation during operation, which we hypothesize is needed to create a positive surface dipole, leading to low effective work function. Emission repeatability from cyclic heating and cooling suggests the promising stability of the low effective work function surface, and additional observations of drift-free emission during one hour of continuous emission testing at high temperature further demonstrates its excellent performance stability
    • …
    corecore